Using communication to reduce locality in distributed multiagent learning
نویسنده
چکیده
This paper attempts to bridge the elds of machine learning, robotics, and distributed AI. It discusses the use of communication in reducing the undesirable eeects of locality in fully distributed multi-agent systems with multiple agents/robots learning in parallel while interacting with each other. Two key problems, hidden state and credit assignment, are addressed by applying local undirected broadcast communication in a dual role: as sensing and as reinforcement. The methodology is demonstrated on two multi-robot learning experiments. The rst describes learning a tightly-coupled coordination task with two robots, the second a loosely-coupled task with four robots learning social rules. Communication is used to 1) share sensory data to overcome hidden state and 2) share reinforcement to overcome the credit assignment problem between the agents and bridge the gap between local/individual and global/group payoo.
منابع مشابه
Using Communication to Reduce Locality in Multi-Robot Learning
This paper attempts to bridge the elds of machine learning, robotics, and distributed AI. It discusses the use of communication in reducing the undesirable eeects of locality in fully distributed multi-agent systems with multiple agents/robots learning in parallel while interacting with each other. Two key problems, hidden state and credit assignment, are addressed by applying local undirected ...
متن کاملLearning other Agents' Preferences in Multiagent Negotiation
In multiagent systems, an agent does not usually have complete information about the preferences and decision making processes of other agents. This might prevent the agents from making coordinated choices, purely due to their ignorance of what others want. This paper describes the integration of a learning module into a communication-intensive negotiating agent architecture. The learning modul...
متن کاملLocality-sensitive task allocation and load balancing in networked multiagent systems: Talent versus centrality
With the development of large scale multiagent systems, agents are always organized in network structures where each agent interacts only with its immediate neighbors in the network. Coordination among networked agents is a critical issue which mainly includes two aspects: task allocation and load balancing; in traditional approach, the resources of agents are crucial to their abilities to get ...
متن کاملA Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem
Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...
متن کاملNetworked Distributed POMDPs: A Synergy of Distributed Constraint Optimization and POMDPs
In many real-world multiagent applications such as distributed sensor nets, a network of agents is formed based on each agent’s limited interactions with a small number of neighbors. While distributed POMDPs capture the realworld uncertainty in multiagent domains, they fail to exploit such locality of interaction. Distributed constraint optimization (DCOP) captures the locality of interaction b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Exp. Theor. Artif. Intell.
دوره 10 شماره
صفحات -
تاریخ انتشار 1998